Phosphorylation of a twitchin-related protein controls catch and calcium sensitivity of force production in invertebrate smooth muscle.
نویسندگان
چکیده
"Catch" is a condition of prolonged, high-force maintenance at resting intracellular Ca2+ concentration ([Ca2+]) and very low energy usage, occurring in invertebrate smooth muscles, including the anterior byssus retractor muscle (ABRM) of Mytilus edulis. Relaxation from catch is rapid on serotonergic nerve stimulation in intact muscles and application of cAMP in permeabilized muscles. This release of catch occurs by protein kinase A-mediated phosphorylation of a high (approximately 600 kDa) molecular mass protein, the regulator of catch. Here, we identify the catch-regulating protein as a homologue of the mini-titin, twitchin, based on (i) a partial cDNA of the purified isolated protein showing 77% amino acid sequence identity to the kinase domain of Aplysia californica twitchin; (ii) a polyclonal antibody to a synthetic peptide in this sequence reacting with the phosphorylated catch-regulating protein band from permeabilized ABRM; and (iii) the similarity of the amino acid composition and molecular weight of the protein to twitchin. In permeabilized ABRM, at all but maximum [Ca2+], phosphorylation of twitchin results in a decreased calcium sensitivity of force production (half-maximum at 2.5 vs. 1.3 microM calcium). At a given submaximal force, with equal numbers of force generators, twitchin phosphorylation increased unloaded shortening velocity approximately 2-fold. These data suggest that aspects of the catch state exist not only at resting [Ca2+], but also at higher submaximal [Ca2+]. The mechanism that gives rise to force maintenance in catch probably operates together, to some extent, with that of cycling myosin crossbridges.
منابع مشابه
Mechanism of Catch Force: Tethering of Thick and Thin Filaments by Twitchin
Catch is a mechanical state occurring in some invertebrate smooth muscles characterized by high force maintenance and resistance to stretch during extremely slow relaxation. During catch, intracellular calcium is near basal concentration and myosin crossbridge cyctng rate is extremely slow. Catch force is relaxed by a protein kinase A-mediated phosphorylation of sites near the N- and C- temini ...
متن کاملThe N-terminal region of twitchin binds thick and thin contractile filaments: redundant mechanisms of catch force maintenance.
Catch force maintenance in invertebrate smooth muscles is probably mediated by a force-bearing tether other than myosin cross-bridges between thick and thin filaments. The phosphorylation state of the mini-titin twitchin controls catch. The C-terminal phosphorylation site (D2) of twitchin with its flanking Ig domains forms a phosphorylation-sensitive complex with actin and myosin, suggesting th...
متن کاملCatch Muscle Myorod Modulates ATPase Activity of Myosin in a Phosphorylation-Dependent Way
Myorod is expressed exclusively in molluscan catch muscle and localizes on the surface of thick filaments together with twitchin and myosin. Myorod is an alternatively spliced product of the myosin heavy-chain gene that contains the C-terminal rod part of myosin and a unique N-terminal domain. The unique domain is a target for phosphorylation by gizzard smooth myosin light chain kinase (smMLCK)...
متن کاملTwitchin from molluscan catch muscle: primary structure and relationship between site-specific phosphorylation and mechanical function.
The phosphorylation state of the myosin thick filament-associated mini-titin, twitchin, regulates catch force maintenance in molluscan smooth muscle. The full-length cDNA for twitchin from the anterior byssus retractor muscle of the mussel Mytilus was obtained using PCR and 5'rapid amplification of cDNA ends, and its derived amino acid sequence showed a large molecule ( approximately 530 kDa) w...
متن کاملUnphosphorylated twitchin forms a complex with actin and myosin that may contribute to tension maintenance in catch.
Molluscan smooth muscle can maintain tension over extended periods with little energy expenditure, a process termed catch. Catch is thought to be regulated by phosphorylation of a thick filament protein, twitchin, and involves two phosphorylation sites, D1 and D2, close to the N and C termini, respectively. This study was initiated to investigate the role of the D2 site and its phosphorylation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 9 شماره
صفحات -
تاریخ انتشار 1998